Abstract

Using fMRI (functional magnetic resonance imaging), we explored the effect of transcranial photobiomodulation on four major resting-state brain networks, namely the sensorimotor, salience, default mode and central executive networks, in normal young subjects. We used a vielight transcranial device (810nm) and compared the scans in 20 subjects (mean age 30.0 ± 2.8years) after active- and sham-photobiomodulation sessions. Four sets of analysis-independent components, network connectivity, infra-slow oscillatory power and arterial spin labelling-were undertaken. Our results showed that when comparing pre- with post-active and pre- with post-sham photobiomodulation scans, there were no substantial differences in activity across any of the four resting-state networks examined, indicating no clear photobiomodulation effect. When taken together with previous findings, we suggest that the impact of photobiomodulation becomes much clearer only after brain circuitry is altered, for example, after a neurone undergoes some change in its equilibrium or homeostasis, either during pathology or ageing, or during a change in functional activity when individuals are engaged in a specific task (e.g. evoked brain activity).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call