Abstract

In this research work, we investigated the effect of two cellulose nanocrystal (CNC)-related parameters, namely aspect ratio and loading content on the mechanical and desalination performance of a cellulose diacetate (CDA) model membrane system. Dispersion of high aspect ratio (HAR) CNCs in the CDA resulted in different types of nanoassembly, represented by evaluating the mechanical efficacy coefficient (CFE), viscoelastic responses and separation performance of the nanocomposite membranes. Accordingly, 0.15 and 0.25 wt% showed random isolated dispersion and tight polymer-nanorod network, while 0.50 and 0.75 wt% conformed to nanorods' pervasive interconnected network (PIN) through side-by-side aggregation and intensive bundle alignment, respectively. Specifically, the nanocomposite membrane containing 0.50 wt% HAR-CNCs simultaneously demonstrated improved mechanical strength along with mitigated water permeability/salt rejection tradeoff for brackish water desalination. This concurrent boosting was attributed to the effective mechanical reinforcement mechanism induced by the percolating network along with its partial aggregation-caused bi-continuous and electrostatically-controlled nano-pathways, orchestrating the separation tradeoff. It confirmed our hypothesis that a nanocomposite membrane with metamaterial characteristic could be obtained via manipulating the dispersion state of CNC rods in the CDA, triggering coincided optimization of mechanical strength and desalination performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call