Abstract

IntroductionDevelopment of secondary hyperalgesia following a cutaneous injury is a centrally mediated, robust phenomenon. The pathophysiological role of endogenous opioid signalling to the development of hyperalgesia is unclear. Recent animal studies, carried out after the resolution of inflammatory pain, have demonstrated reinstatement of tactile hypersensitivity following administration of μ-opioid-receptor-antagonists. In the present study in humans, we analyzed the effect of naloxone when given after the resolution of secondary hyperalgesia following a first-degree burn injury.MethodsTwenty-two healthy volunteers were included in this placebo-controlled, randomized, double-blind, cross-over study. Following baseline assessment of thermal and mechanical thresholds, a first-degree burn injury (BI; 47°C, 7 minutes, thermode area 12.5 cm2) was induced on the lower leg. Secondary hyperalgesia areas around the BI-area, and separately produced by brief thermal sensitization on the contralateral thigh (BTS; 45°C, 3 minutes, area 12.5 cm2), were assessed using a polyamide monofilament at pre-BI and 1, 2, and 3 hours post-BI. At 72 hrs, BI and BTS secondary hyperalgesia areas were assessed prior to start of a 30 minutes intravenous infusion of naloxone (total dose 21 microg/kg) or placebo. Fifteen minutes after start of the infusion, BI and BTS secondary hyperalgesia areas were reassessed, along with mechanical and thermal thresholds.ResultsSecondary hyperalgesia areas were demonstrable in all volunteers 1–3 hrs post-BI, but were not demonstrable at 72 hrs post-burn in 73–86% of the subjects. Neither magnitude of secondary hyperalgesia areas nor the mechanical and thermal thresholds were associated with naloxone-treated compared to placebo-treated subjects.ConclusionNaloxone (21 microg/kg) did not reinstate secondary hyperalgesia when administered 72 hours after a first-degree burn injury and did not increase BTS-generated hyperalgesia. The negative results may be due to the low dose of naloxone or insufficient tissue injury to generate latent sensitization.

Highlights

  • Development of secondary hyperalgesia following a cutaneous injury is a centrally mediated, robust phenomenon

  • Secondary hyperalgesia areas were demonstrable in all volunteers 1–3 hrs post-burn injury (BI), but were not demonstrable at 72 hrs post-burn in 73–86% of the subjects

  • Neither magnitude of secondary hyperalgesia areas nor the mechanical and thermal thresholds were associated with naloxone-treated compared to placebo-treated subjects

Read more

Summary

Introduction

Development of secondary hyperalgesia following a cutaneous injury is a centrally mediated, robust phenomenon. Recent animal studies, carried out after the resolution of inflammatory pain, have demonstrated reinstatement of tactile hypersensitivity following administration of m-opioid-receptor-antagonists. In the present study in humans, we analyzed the effect of naloxone when given after the resolution of secondary hyperalgesia following a first-degree burn injury. Administration of naloxone and naltrexone to animals, following resolution of an inflammatory injury, has demonstrated a NMDA-receptor dependent reinstatement of hypersensitivity to noxious stimuli near or at the injured area [16,17,18,19]. Translational research, from animals to humans, in latent sensitization is of critical importance, since insight in these pathological mechanisms may lead to reformulation of strategies for prevention of chronic pain

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call