Abstract

In this paper, we analyze the relative impact of attention measures either on the mean or on the variance of Bitcoin returns by fitting nonlinear econometric models to historical data: Two non-overlapping subsamples are considered from January 1, 2012, to December 31, 2017. Outcomes confirm that market attention has an impact on Bitcoin returns and volatility, when measured by applying several transformations on time series for the trading volume or the SVI Google searches index. Specifically, best candidate models are selected via the so-called Box–Jenkins methodology and by maximizing out-of-sample forecasting performance. Overall, we can conclude that trading volume-related measures affect both the mean and the volatility of the cryptocurrency returns, while Internet searches volume mainly affects the volatility. An interesting side finding is that the inclusion of attention measures in model specification makes forecast estimates more accurate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.