Abstract
Mangrove wetlands are vital coastal ecosystems that can absorb and accumulate pollutants. Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose potential risks to ecosystems and human health. However, their source and transport fate in mangrove areas are poorly understood. This study investigates 29 PAHs pollution of water and sediment in Zhangjiangkou Mangrove Wetland, the northernmost large-scale mangrove wetland reserve in China. We examine the distribution, source, transport mechanisms and risk assessment of PAHs. The results show that the concentrations of PAHs in mangrove sediment range from 55.62 to 347.36 ng/g (DW), with 5-ring PAHs being the dominant species. While the concentrations of PAHs in surface water range from 10.61 to 46.39 ng/L, with 2-ring PAHs and alkylated PAHs being the dominant species. The PAHs concentrations in surface water and sediment of river are higher than those in mangrove area, indicating that mangrove water could receive PAHs through tidal exchange. Based on diagnostic ratios (DRs), principal component analysis (PCA), and positive matrix factorization (PMF), we infer that the leaf deposition (48.55%) could be an important pathway of PAHs in mangrove sediment except for river water transport (51.45%), while the PAHs in estuary water originate mainly from point sources such as biomass burning (50.96%) and traffic emission (49.04%). The range of toxic equivalents in surface water and sediment was 2.73–16.09 ng TEQ g−1 and 0.03–3.63 ng/L, respectively. Although the ecological risk assessment suggests that the PAHs pollution in surface water and sediment poses a low risk, we recommend more attention to the protection of the mangrove ecosystem. This study reveals that mangrove leaf falling might be a significant mechanism of PAH sequestration in the mangrove system, which deserves more attention in future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.