Abstract

The removal of apex carnivores from ecosystems can impact the abundance and diversity of species in lower trophic levels. In arid ecosystems, where “bottom up” forces of primary productivity and resource availability strongly affect trophic interactions, the role of “top down” effects is still much debated. This study explored the potential role of an apex predator, the dingo, as a “top down” trophic regulator in Australian arid ecosystems under different levels of primary productivity and dingo management regimes. Consistent with the theory of top down regulation, strong relationships were found between dingo management, dingo activity and fox activity. Dingoes appeared to suppress fox activity where dingoes were uncontrolled or only opportunistically controlled. At sites where dingoes were absent or in low numbers, fox activity was higher, and this inverse relationship persisted regardless of rainfall. The activity of rabbits and small mammals was lower where dingoes were absent and fox activity was high, while the activity of macropods was higher in the absence of dingoes. Feral cat activity did not differ significantly between sites under different dingo management or between years. These results suggest that management of dingoes is a key determinant of fox activity and the activity of some prey under varying levels of productivity. Evidence from this research showed that while the strength of trophic regulation by dingoes may fluctuate, top down effects occurred both prior to and post significant rainfall events. Following this, top down regulation of fox populations during dry periods at sites where dingoes are retained may enable higher and more stable “baseline” densities of small vertebrates, from which a larger and more rapid rate of increase of these prey during the “boom” periods can occur. Understanding the relative strength and interactions of top down and bottom up forces in regulating populations, and under what ecological states the importance of each changes, is important for the long-term conservation of biodiversity in arid regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.