Abstract
Abstract In the following, we offer a theoretical approach that attempts to explain (Comments 1-3) why and when the Macaulay duration concept happens to be a good approximation of a bond’s price sensitivity. We are concerned with the basic immunization problem with a single liability to be discharged at a future time q. Our idea is to divide the class K of all shifts a(t) of a term structure of interest rates s(t) into many classes and then to find a sufficient and necessary condition a given bond portfolio, dependent on a class of shifts, must satisfy to secure immunization at time q against all shifts a(t) from that class. For this purpose, we introduce the notions of dedicated duration and dedicated convexity. For each class of shifts, we show how to choose from a bond market under consideration a portfolio with maximal dedicated convexity among all immunizing portfolios. We demonstrate that the portfolio yields the maximal unanticipated rate of return and appears to be uniquely determined as a barbell strategy (portfolio) built up with 2 zero-coupon bearing bonds with maximal and respective minimal dedicated durations. Finally, an open problem addressed to researchers performing empirical studies is formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.