Abstract
There is profound interest in knowing the degree to which the effectiveness of China's nature reserves, and whether leakage is common around the reserves, in the face of the most drastic conflicts between conservation and development in the world. To answer these questions, we employed the Landsat-derived Global Forest Change Dataset with 30-m resolution to examine forest change patterns during 2001 and 2017 both inside and outside of 13 typically national nature reserves in China. The average forest loss rates inside the reserves were significantly lower than those of outside the reserves (i.e., both in buffer and landscape zones), suggesting the success in protecting forest of these reserves in China. We found that the protection practice reduced approximately 10% of deforestation. Protection efficiency may be substantially overestimated (about 13-43%) if failing to control the related variables, such as altitude, climate, and human interference. The forest loss rates in the buffer zones were not significantly higher than those in the broader landscape zones, suggesting that leakage is not a frequent occurrence in the buffer zones of the reserves. However, the forest loss rates showed a slightly increasing tendency from 2001 to 2017, the loss rates increased gradually from inside to their outside buffer zones, and leakage was observed in certain zones of some years for most of the reserves. The conversions of forest to grassland and cultivated land were the primary trajectories of forest loss both inside and outside of the reserves. Though the leakage is not universal in the reserves across the country, forest loss rates are much higher in the buffer zones than those inside the reserves, resulting in increased insulation of the reserves that could undermine the provisioning of ecosystem services and the biodiversity conservation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.