Abstract

Polymerization shrinkage of resin composites may impair restoration longevity. It is hypothesized that layering, rather than bulk, techniques result in less stress in the tooth-restoration complex. The aim of this study was to compare shrinkage stresses for different restorative techniques used for cusp-replacing restorations with direct resin composite. In a 3-D FE model, the dynamic process of shrinkage during polymerization was simulated. Time-dependent parameters (shrinkage, apparent viscosity, Young's modulus, Poisson ratio, and resulting creep), which change during the polymerization process, were implemented. Six different restorative procedures were simulated: a chemically cured bulk technique, a light-cured bulk technique, and 4 light-cured layering techniques. When polymerization shrinkage is considered, a chemically cured composite shows the least resulting stress. The differences seen among various layering build-up techniques were smaller than expected. The results indicate that the stress-bearing locations are the interface and the cervical part of the remaining cusp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.