Abstract
Weighted averages of air pollution measurements from monitoring stations are commonly assigned as air pollution exposures to specific locations. However, monitoring networks are spatially sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure misclassification. Advanced methods of exposure assessment are rarely practicable in estimating daily concentrations over large geographical areas. We propose an accessible method using temporally adjusted land use regression models (daily LUR). We applied this to produce daily concentration estimates for nitrogen dioxide, ozone, and particulate matter in a healthcare setting across England and compared them against geographically extrapolated measurements (inverse distance weighting) from air pollution monitors. The daily LUR estimates outperformed IDW. The precision gains varied across air pollutants, suggesting that, for nitrogen dioxide and particulate matter, the health effects may be underestimated. The results emphasised the importance of spatial heterogeneity in investigating the societal impacts of air pollution, illustrating improvements achievable at a lower computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.