Abstract
The study investigated the effects of exposure to increased relative air humidity (RH) on stomatal morphology and sensitivity to stomata closure inducing stimulus (low RH) in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) coppice growing in field conditions. Artificially elevated RH reduced air vapour pressure deficit by 5%–10% and altered stomatal sensitivity; trees grown under high RH exhibited stronger stomatal response to decreasing air humidity. We found no difference in mean stomatal pore length between treatments and a small decline in stomatal density under humidification. The lack of correlation between stomatal sensitivity and morphological traits suggests that stomatal sensitivity was unaffected by stomatal morphology. In light of rising atmospheric humidity predicted for high latitudes, strict stomatal control over water loss might be beneficial for trees if drought events become more frequent in the future. However, our experiment revealed that about two-thirds of the leaf-to-air vapour pressure difference (VPDL) response curves demonstrated the opposite pattern, i.e., stomatal opening in response to increasing VPDL. Strict stomatal regulation is probably not beneficial to fast-growing aspen coppice under low RH, as this trait may restrict their carbon gain and growth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.