Abstract

The inhibitory effect that H1 histone exerts on the in vitro DNA methylation process, catalysed by mammalian DNA methyltransferase, together with the relative hypomethylation of linker DNA in eukaryotic cells chromatin, suggest that this hypomethylated state of linker DNA can be of importance in allowing or regulating H1-dependent chromatin condensation. In native oligonucleosomes (olnu), i.e., in chromatin fragments consisting of 5–20 nucleosomes each, there was a correlation between the effects of H1 on the DNA ellipticity at 280 nm and the in vitro assayed methyl-accepting ability. The same was true in H1-depleted or in H1-reconstituted preparations. Artificial methylation caused olnu DNA to lose its ability to allow cooperative H1-H1 interactions under ionic strength conditions similar to those known to affect the transition of the 10-nm filament to the 30-nm chromatin fiber. These results suggest that hypomethylation of linker DNA plays a role in the H1-H1 interactions that are needed for solenoid condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.