Abstract

We investigated the dissociation of nitric acid on large water clusters (H2O)N, N̄ ≈ 30-500, i.e., ice nanoparticles with diameters of 1-3 nm, in a molecular beam. The (H2O)N clusters were doped with single HNO3 molecules in a pickup cell and probed by mass spectrometry after a low-energy (1.5-15 eV) electron attachment. The negative ion mass spectra provided direct evidence for HNO3 dissociation with the formation of NO3-⋯H3O+ ion pairs, but over half of the observed cluster ions originated from non-dissociated HNO3 molecules. This behavior is in contrast with the complete dissociation of nitric acid on amorphous ice surfaces above 100 K. Thus, the proton transfer is significantly suppressed on nanometer-sized particles compared to macroscopic ice surfaces. This can have considerable implications for heterogeneous processes on atmospheric ice particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.