Abstract

IntroductionUrinary recovery of enterally administered probes is used as a clinical test of intestinal mucosal permeability. Recently, evidence has been provided that the recovery of some but not all sugar probes is dependent on the amount of diuresis and renal function. The aim of this study was to assess the effect of fluid loading on the urinary recovery of sugar probes in healthy volunteers.MethodsIn a cross-over study, 10 healthy volunteers ingested 100 ml of a solution containing 0.2 g of 3-O-methyl-D-glucose (3-OMG), 0.5 g of D-xylose, 1.0 g of L-rhamnose, and 5.0 g of lactulose on two different days. The volunteers were randomized to receive either 2 litres of Ringer acetate or no fluid during the following 3 hours. The sugar concentrations were measured in 5-hour urine samples period.ResultsFluid loading increased urine production and urinary recovery of xylose. Fluid loading did not influence the urinary recovery of 3-OMG, L-rhamnose, or lactulose. Neither the lactulose/rhamnose ratio nor the 3-OMG/rhamnose ratio changed.ConclusionFluid loading increases mediated carbohydrate transport but not the lactulose/rhamnose ratio, after oral sugar administration in healthy volunteers. It remains to be determined whether sugar probes are handled differently in response to fluids in patients with organ dysfunctions.

Highlights

  • Urinary recovery of enterally administered probes is used as a clinical test of intestinal mucosal permeability

  • Fluid loading did not influence the urinary recovery of 3-OMG, L-rhamnose, or lactulose

  • We studied the effect of a postmucosal factor, fluid loading, on the urinary excretion of enterally administered sugar probes in healthy volunteers

Read more

Summary

Introduction

Urinary recovery of enterally administered probes is used as a clinical test of intestinal mucosal permeability. Mucosal intestinal permeability can be assessed noninvasively by measuring urinary excretion of orally administered test substances. This involves estimation of the urinary recovery of single or multiple probes administered orally. Quantifying the absorption of two sugars of different sizes offers advantages compared with the use of single probes: urinary recovery of these probes expressed as a ratio is sensitive because this can reflect the contrasting effects of decreased absorption of monosaccharides, such as rhamnose or mannitol, owing to the reduced surface area and increased permeability for larger disaccharides, such as lactulose or cellobiose, owing to the opening of intracellular pathways.

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.