Abstract

BackgroundFlip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot. These are popular in warm climates; however are widely criticised for being detrimental to foot health and potentially modifying walking gait. Contemporary alternatives exist including FitFlop, which has a wider strap positioned closer to the ankle and a thicker, ergonomic, multi-density midsole. Therefore the current study investigated gait modifications when wearing flip-flop style footwear compared to barefoot walking. Additionally walking in a flip-flop was compared to that FitFlop alternative.MethodsTesting was undertaken on 40 participants (20 male and 20 female, mean ± 1 SD age 35.2 ± 10.2 years, B.M.I 24.8 ± 4.7 kg.m−2). Kinematic, kinetic and electromyographic gait parameters were collected while participants walked through a 3D capture volume over a force plate with the lower limbs defined using retro-reflective markers. Ankle angle in swing, frontal plane motion in stance and force loading rates at initial contact were compared. Statistical analysis utilised ANOVA to compare differences between experimental conditions.ResultsThe flip-flop footwear conditions altered gait parameters when compared to barefoot. Maximum ankle dorsiflexion in swing was greater in the flip-flop (7.6 ± 2.6°, p = 0.004) and FitFlop (8.5 ± 3.4°, p < 0.001) than barefoot (6.7 ± 2.6°). Significantly higher tibialis anterior activation was measured in terminal swing in FitFlop (32.6%, p < 0.001) and flip-flop (31.2%, p < 0.001) compared to barefoot. A faster heel velocity toward the floor was evident in the FitFlop (−.326 ± .068 m.s−1, p < 0.001) and flip-flop (−.342 ± .074 m.s−1, p < 0.001) compared to barefoot (−.170 ± .065 m.s−1). The FitFlop reduced frontal plane ankle peak eversion during stance (−3.5 ± 2.2°) compared to walking in the flip-flop (−4.4 ± 1.9°, p = 0.008) and barefoot (−4.3 ± 2.1°, p = 0.032). The FitFlop more effectively attenuated impact compared to the flip-flop, reducing the maximal instantaneous loading rate by 19% (p < 0.001).ConclusionsModifications to the sagittal plane ankle angle, frontal plane motion and characteristics of initial contact observed in barefoot walking occur in flip-flop footwear. The FitFlop may reduce risks traditionally associated with flip-flop footwear by reducing loading rate at heel strike and frontal plane motion at the ankle during stance.

Highlights

  • Flip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot

  • Video data has been used in an observational study of pedestrians, identifying a reduction in average walking speeds when walking in flip-flops [2], which was attributed to a shorter stride length compared with other footwear and confirmed in a laboratory environment [9]

  • An experimental study using 2D gait analysis concluded that there was an increase in ankle plantarflexion during swing, which the authors hypothesised could be due to contraction of the toe flexors to keep the flip-flop on the foot due to the lack of heel-strap or full upper [9]

Read more

Summary

Introduction

Flip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot. Flip-flops are a popular summer shoe in the United Kingdom and commonly worn throughout the year in warmer climates such as America and Australasia [1,2] This style of footwear is defined by having one strap across the dorsal fore-foot, which attaches to the footbed between the hallux and second toe to the thin, flexible sole. An experimental study using 2D gait analysis concluded that there was an increase in ankle plantarflexion during swing, which the authors hypothesised could be due to contraction of the toe flexors to keep the flip-flop on the foot due to the lack of heel-strap or full upper [9] Contrasting these findings, Chard et al [6] identified greater ankle dorsiflexion prior to and at heel contact when walking in flipflops compared to barefoot conditions

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.