Abstract
Apple fruits are highly susceptible to superficial scald, which is currently controlled by both chemical- and non-chemical-based technologies. The possible threat of withdrawal of diphenylamine (DPA) for the control of superficial scald has prompted us to investigate the biochemical and molecular aspects of scald resistance. We have selected genetic populations of a cross between `White Angel' and `Rome Beauty' that are resistant and susceptible to scald, and investigated whether the resistance of scald in these populations is due to the higher antioxidant-based defense systems. Cortical tissue of fruits (0–3 cm) was peeled and analyzed for conjugated trienes, H2O2, carbonyl groups, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidases (POX). Scald-resistant fruits at harvest had higher antioxidant enzymes and low levels of conjugated trienes, carbonyl compounds, and H2O2 levels compared to fruits that are susceptible to scald. Further, H2O2 levels rose in scald-susceptible fruits stored under low temperature with a concomitant increase in the production of conjugated trienes and carbonyl compounds, while no major changes were observed in scald-resistant fruits. Enhanced levels of H2O2 in scald-susceptible populations could be related to enhanced SOD activities and decreased activities of H2O2 degrading enzymes, suggesting that an imbalance between \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{-}{/}\mathrm{H}_{2}\mathrm{O}_{2}\) \end{document} may have occurred. These results indicate that a coordination between SOD and H2O2 degrading enzymes in scald resistant populations may have minimized the influence of AOS on the oxidation of α-farnesene, protein, and, thereby, on scald. Hence, we have hypothesized that enhancing the potential of apple fruit to metabolize AOS develops resistance to superficial scald. [Supported in part by USDA Specific Cooperative Agreement 58-1931-5-017.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.