Abstract

Aseptic loosening of orthopedic implants caused by wear particles is a major clinical problem. This review examines the hypothesis that bacterial endotoxin contributes to aseptic loosening. Clinical findings support this hypothesis: bacterial biofilms exist on many implants from patients with aseptic loosening and antibiotics in bone cement reduce the rate of aseptic loosening. Three approaches were used to demonstrate that adherent endotoxin increases bioactivity of titanium particles. These experiments measured cytokine production and osteoclast differentiation in vitro and murine calvarial osteolysis in vivo. First, removal of >99.9% of the adherent endotoxin from titanium particles significantly ablates their biological activity. Second, adding lipopolysaccharide back to these "endotoxin-free" particles restores their biological activity. Third, cells or mice that are genetically hyporesponsive to endotoxin are significantly less responsive to titanium particles than are wild-type controls. Other investigators have confirmed and extended these results to include virtually all orthopedically relevant types of particles, including authentic titanium alloy particles retrieved from patients with loosening. Our recent studies suggest that adherent endotoxin on orthopedic implants may also inhibit initial osseointegration of the implants. Taken together, these studies suggest that bacterial endotoxin may have a significant role in induction of aseptic loosening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.