Abstract

It has been rigorously demonstrated that an end-to-end (E2E) differentiable formulation of a deep neural network can turn a complex recognition problem into a unified optimization task that can be solved by some gradient descent method. Although E2E network optimization yields a powerful fitting ability, the joint optimization of layers is known to potentially bring situations where layers co-adapt one to the other in a complex way that harms generalization ability. This work aims to numerically evaluate the generalization ability of a particular non-E2E network optimization approach known as FOCA (Feature-extractor Optimization through Classifier Anonymization) that helps to avoid complex co-adaptation, with careful hyperparameter tuning. In this report, we present intriguing empirical results where the non-E2E trained models consistently outperform the corresponding E2E trained models on three image-classification datasets. We further show that E2E network fine-tuning, applied after the feature-extractor optimization by FOCA and the following classifier optimization with the fixed feature extractor, indeed gives no improvement on the test accuracy. The source code is available at https://github.com/DensoITLab/FOCA-v1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call