Abstract

BackgroundGiven a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes. There are lots of work on the prediction algorithms, but none of the existing work investigated the effects of the encodings on the genetic trait prediction problem.MethodsIn this work, we view the genetic trait prediction problem from a novel angle: a multiple regression on categorical data problem, which requires encoding the categorical data into numerical data. We further proposed two novel encoding methods and we show that they are able to generate numerical features with higher predictive power.Results and DiscussionOur experiments show that our methods are superior to the other encoding methods for both single marker model and epistasis model. We showed that the quantitative genetic trait prediction problem heavily depends on the encoding of genotypes, for both single marker model and epistasis model.ConclusionsWe conducted a detailed analysis on the performance of the hybrid encodings. To our knowledge, this is the first work that discusses the effects of encodings for genetic trait prediction problem.

Highlights

  • Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects

  • We conducted a detailed analysis on the performance of the hybrid encodings

  • We showed that our hybrid encoding methods are superior to both ordinal and target-based encodings for both single marker model as well as epistasis model

Read more

Summary

Methods

We view the genetic trait prediction problem from a novel angle: a multiple regression on categorical data problem, which requires encoding the categorical data into numerical data. We further proposed two novel encoding methods and we show that they are able to generate numerical features with higher predictive power

Results and discussion
Conclusions
Background
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.