Abstract
Background: Programmed death-ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) have been reported as possibly favorable prognostic factors in colorectal cancer (CRC). However, their longitudinal effect is unknown. Methods: A pilot study was performed to investigate whether baseline PD-1/PD-L1 levels are associated with further laboratory changes and/or shorter survival. Results: A total of 506 laboratory measurements from 37 metastatic CRC patients were analyzed. The baseline plasma PD-1 and PD-L1 levels were 27.73 ± 1.20 pg/mL and 16.01 ± 1.09 pg/mL, respectively. Disease progression (p = 0.0443) and baseline high-sensitivity C-reactive protein (p = 0.0011), aspartate transaminase (p = 0.0253), alanine transaminase (p = 0.0386), and gamma-glutamyl transferase (p = 0.0103) were associated with higher PD-L1 levels. Based on the baseline PD-1/PD-L1 levels, low and high PD-1/PD-L1 groups were created. Constant, pathological levels of complete blood count values, high-sensitivity C-reactive protein, serum albumin, high-density lipoprotein cholesterol, and lactate dehydrogenase were characteristic for patients with high baseline PD-L1. High PD-L1 levels were significantly associated with increased tumor burden. Disease-specific survival and progression-free survival were significantly shorter in patients with high PD-L1. Conclusions: Abnormal levels of laboratory parameters and intensified tumor burden can be expected if elevated baseline plasma PD-1/PD-L1 levels are found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.