Abstract

Against the background of global climate change and the rapid rise of the digital economy, the digital transformation of agriculture is profoundly changing the agricultural production and operation mode with the help of digital technology, becoming a new driving force for low-carbon and sustainable development of agriculture. However, previous studies rarely examined the impact of agricultural digital transformation on agricultural low-carbon transformation from the perspective of carbon productivity. To fill this gap, this study attempts to build a theoretical analysis framework for the impact of agricultural digital transformation on agricultural carbon productivity (ACP). By using a set of panel data from 30 provinces (cities) in China from 2011 to 2019, this study explores the impact of agricultural digital transformation on ACP, as well as its conduction mechanism and the non-linear mechanism. Empirical results show that the transformation of agricultural digitalization is conducive to the promotion of ACP. A series of robustness analyses support this conclusion. The main transmission mechanisms for digital transformation to affect ACP include agricultural industrial structure upgrading, and the agricultural scale operation. In addition, with the improvement of urbanization level and rural human capital, the impact of agricultural digital transformation on ACP presents a “U” type non-linear feature of inhibition first and promotion later. Furtherly, heterogeneity analysis shows that the impact of digital transformation on ACP will vary greatly depending on the levels of ACP, the geographical location of the studied area and whether it is a main grain-producing area. This study provides a theoretical and empirical basis for the improvement of China’s agricultural carbon productivity from the perspective of the digital economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call