Abstract

This work examines the question of how a Hubbard U correction to a local exchange–correlation functional compares with adding Hartree–Fock exchange to a local functional for both solid-state and molecular properties. We compute a solid-state property, namely the band gap, and thermochemical molecular properties, in particular, main-group bond energies, transition metal–ligand bond energies, and barrier heights, to elucidate whether the DFT+U method mimics hybrid DFT. We find that a calculation with a Hubbard U correction may or may not mimic a hybrid functional—depending on the atom, the subshell, and the property to which it is applied. For band gaps, we find that adding a Hubbard U correction to the valence d orbitals of transition metals increases the band gap, which thereby gets closer to the experimental value, while adding a Hubbard U correction to valence s or p orbitals of main-group elements need not always increase the band gap. For molecular thermochemistry, we find that adding a Hubbard U correction to a local density functional need not have the same effect as adding Hartree–Fock exchange to a local density functional. For example when compared to a DFT calculation with a local exchange-correlation functional, hybrid DFT increases the barrier height in all cases, but DFT+U does not always increase the barrier height. For the band gaps of transition metal monoxides, the Hubbard-corrected results lowered the mean errors significantly and were comparable to what could be achieved with a much more expensive hybrid functional, but for reaction barrier heights and bond energies of molecules, the Hubbard correction was found to lower the mean error by only approximately a kcal/mol. As part of the analysis, we also compare VASP and Gaussian 09 calculations for the same density functional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.