Abstract

We report on poly(ethylene oxide) based single ion conductors for solid polymer electrolytes. The widely agreed upon vehicle for cation movement in PEO-based solid polymer electrolytes is the single cation, in which the cation is solvated by PEO ether oxygens. Here we report a different vehicle that becomes active with strong anion-cation interactions. In the common perspective, increasing ion-ion interactions would increase ion association, decrease cation solvation, and disable cation movement. Decreasing these interactions would have the opposite effect. We vary cation-anion interaction strength, using anion charge delocalization in molecular dynamics simulations. This creates a series of systems with levels of ion aggregation from single cations (weak interaction) to mostly ion aggregates (strong interaction). Although in the weak model single cations are faster than those in ion pairs and aggregates, with stronger interactions a different mechanism emerges. Paired cations move the fastest by visiting different anion partners in succession. The importance of this observation lies in the possibility of decoupling cation movement from polymer motion, which is required to prevent dendrite formation in both Li and Na ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.