Abstract

Inter-individual variability to drug response is a major concern in the field of oncology. In the era of “targeted” therapy, optimal treatment outcomes can be achieved by more individualized initial dosing and/or alternative treatment according to the patient’s genetic make-up. Although several genes are responsible for the interindividual variability in drug metabolism and response, the Cytochrome P450 enzymes are the most widely validated and clinically utilized. Pharmacogenetic testing of CYP2D6 alleles was the first FDA approved test due to its involvement in the metabolism of a wide range of drugs such as the anti-cancer drug tamoxifen (Nolvadex®), to which clinical response varies widely among patients. Identifying determinants and predictors of the variable response or non-response to tamoxifen can facilitate therapeutic dose measurement or even determine the choice of alternative agents (e.g. aromatase inhibitors). Several clinical trials have shown that genetic variants associated with slower metabolism of tamoxifen may lead to lower than expected blood levels of its pharmacologically active metabolites and thus shorter recurrence-free survival. CYP2D6 genotyping can be clinically useful for selecting adjuvant therapy, improving the clinical outcome of tamoxifen and potentially reducing overall costs of treatment. However, CYP2D6 phenotypebased recommendations for tamoxifen have not been developed and guidelines linking the CYP2D6 status to personalized oncologic care do not exist and therefore clinicians’ uptake of the testing has remained very low. Large prospective randomized clinical trials are required to assess whether CYP2D6 genotype can robustly predict treatment outcome of tamoxifen and improve overall survival.

Highlights

  • Tamoxifen, a selective oestrogen receptor modulator, has been the mainstay for the therapy and prevention of factors underlying the ineffectiveness of tamoxifen are yet to be fully defined, these active metabolites play a key© Copyright iMedPub | This article is available from: http://biochem-molbio.imedpub.com/role in the high degree of interindividual differences in response to tamoxifen therapy [7,8,9,10].Tamoxifen is metabolised via two routes; 4-hydroxylation and N-demethylation which account for ~7% and ~92% of tamoxifen metabolism, respectively

  • American Society of Clinical Oncology clinical practice (ASCO) guidelines and the National Comprehensive Cancer Network (NCCN) recommendations: Because of the controversial findings from the two above-mentioned big studies, BIG 1–98 and ATAC trial, in which no relationship was found between the CYP2D6 genotype and breast cancer recurrence, the committee of the American Society of Clinical Oncology clinical practice (ASCO) and the National Comprehensive Cancer Network (NCCN) do not recommend CYP2D6 genotype testing to personalize tamoxifen therapy and CYP2D6 allelic status should not be used to guide adjuvant endocrine therapy

  • PharmaGKB and the Dutch pharmacogenetics working group recommendations: For CYP2D6 poor (PMs) and intermediate (IMs) metabolizers, alternative drugs are recommended for treating postmenopausal patients with breast cancer and concurrent use of CYP2D6 inhibitors with tamoxifen to be avoided [81]

Read more

Summary

Literature Review

Identifying determinants and predictors of the variable response or non-response to tamoxifen can facilitate therapeutic dose measurement or even determine the choice of alternative agents (e.g. aromatase inhibitors). Several clinical trials have shown that genetic variants associated with slower metabolism of tamoxifen may lead to lower than expected blood levels of its pharmacologically active metabolites and shorter recurrence-free survival. CYP2D6 genotyping can be clinically useful for selecting adjuvant therapy, improving the clinical outcome of tamoxifen and potentially reducing overall costs of treatment. Large prospective randomized clinical trials are required to assess whether CYP2D6 genotype can robustly predict treatment outcome of tamoxifen and improve overall survival. The pro-drug, tamoxifen, is extensively metabolised by CYP2D6 into therapeutically-active moieties, 4-hydroxytamoxifen and endoxifen; their affinity for the oestrogenreceptors is ~100-fold greater than tamoxifen and their antioestrogenic potency in suppressing ER-dependent cell proliferation is 30-100-fold stronger than tamoxifen [6,9,11,12,13,14,15]

Introduction
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.