Abstract

Similarity is found in crater densities on the most heavily cratered surfaces throughout the solar system. This is hypothesized to result from a steady-state “saturation equilibrium” being approached or achieved by cratering processes. This hypothesis conflicts with some recent interpretations. However, it accounts for (1) a similarity in maximum relative crater density, below certain theoretically predicted values, on all heavily cratered surfaces; (2) a leveling off at this same relative density among 100-m scale (secondary?) craters in populations on lunar maria and other sparsely cratered lunar surfaces; (3) the approximate uniformity of maximum relative densities on Saturn satellites (in spite of dramatic variations predicted from nonsaturation models assuming heliocentric impactors). The lunar frontside upland crater population, sometimes described as a well-preserved production function useful for interpreting other planetary surfaces, is found not to be a production function. It was modified by intercrater plains formed (at least partly) by early upland basaltic lava flooding, recently confirmed spectrophotometrically. Consistent with this, counts in “pure uplands” (those lacking intercrater plains) match the proposed saturation equilibrium density. Variations among large ( D > 64 km) crater populations are found, but these may involve several hypothesized mechanisms that rapidly obliterate large craters, especially on icy surfaces. Recent models, in which different populations of interplanetary bodies hit different planets, need further appraisal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call