Abstract

Restoration of proximal humeral anatomy (RPHA) after total shoulder arthroplasty (TSA) has been shown to result in better clinical outcomes than is the case in nonanatomic humeral reconstruction. Preoperative virtual planning has mainly focused on glenoid component placement. Such planning also has the potential to improve anatomicpositioning of the humeral head by more accurately guiding the humeral head cutand aid in the selection of anatomic humeral component sizing. It was hypothesized that the use of preoperative 3-dimensional (3D) planning helps to reliably achieve RPHA after stemless TSA. One hundred consecutive stemless TSA (67 males, 51 right shoulder, mean age of 62 ±9.4 years) were radiographically assessed using pre- and postoperative standardized anteroposterior radiographs. The RPHA was measured with the so-called circle method described by Youderian etal. We measured deviation from the premorbid center of rotation (COR), and more than 3 mm was considered as minimal clinically important difference. Additionally, pre- and postoperative humeral head diameter (HHD), head-neck angle (HNA), and humeral head height (HHH) were measured to assess additional geometrical risk factors for poor RPHA. The mean distance from of the premorbid to the implanted head COR was 4.3± 3.1 mm. Thirty-five shoulders (35%) showed a deviation of less than 3 mm (mean 1.9±1.1) and 65 shoulders (65%) a deviation of ≥3 mm (mean 8.0 ± 3.7). Overstuffing was the main reason for poor RPHA (88%). The level of the humeral head cut was responsible for overstuffing in 46 of the 57 overstuffed cases. The preoperative HHD, HHH, and HNA were significantly larger, higher, and more in valgus angulation in the group with accurate RPHA compared with the group with poor RPHA (HHD of 61.1 mm ± 4.4 vs. 55.9 ± 6.6, P < .001; HHH 8.6±2.2 vs. 7.6±2.6, P= .026; and varus angulation of 134.7° ±6.4° vs. 131.0° ±7.91, P = .010). Restoration of proximal humeral anatomy after stemless TSA using computed tomography (CT)-based 3D planning was not precise. A poorly performed humeral head cut was the main reason for overstuffing, which was seen in 88% of the cases with inaccurate RPHA. Preoperative small HHD, low HHH, and varus-angulated HNA are risk factors for poor RPHA after stemless TSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call