Abstract

BackgroundThe evidence that the combination of elastic and weight resistance training acutely affects or improves resultant responses to conduit artery function is anecdotal. The aim of this study was to examine brachial artery flow-mediated vasodilation (FMD) before and after acute exercise when performed at 3 conditions of resistance. MethodsFourteen healthy, untrained (inactive) male participants (Mean age ± SD: 20.6 ± 0.5 years) completed 3 sets of 15 repetitions of the single-arm curl exercise. Testing was executed on 3 separate days as follows: day 1 with a dumbbell alone (DA), day 2 with elastic tubing alone (EA), and day 3 with a dumbbell with elastic tubing (DWE). Testing was executed in random order. Within the DWE condition, the resistance provided by the elastic tubing was equivalent to 20% of the subjects’ 15 repetition maximum (RM). A one-way repeated measures analysis of variance was employed to evaluate different loading conditions on FMD. ResultsThe results demonstrated that FMD was significantly greater during DWE than during EA, DA, and at baseline FMD (p < 0.05). Moreover, brachial FMD improved from baseline in the DWE condition (to 21.5 ± 7.3%; p < 0.05) but not significantly in the EA condition (to 14.3 ± 4.4%; p ≥ 0.05), and actually decreased significantly in the DA condition (to 8.3 ± 3.1%; p < 0.05). ConclusionDWE exhibits notable efficacy for improving endothelial function in inactive men during the single arm curl exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.