Abstract

MgAl2O4-supported Ni materials are highly active and cost-effective CO2 conversion catalysts, yet their oxidation by CO2 remains dubious. Herein, NiO/MgAl2O4, prepared via colloidal synthesis (10 wt % Ni) to limit size distribution, or wet impregnation (5, 10, 20, and 40 wt % Ni), and bare, i.e., unsupported, NiO are examined in H2 reduction and CO2 oxidation, using thermal conductivity detector-based measurements and in situ quick X-ray absorption spectroscopy, analyzed via multivariate curve resolution-alternating least-squares. Ni reoxidation does not occur for bare Ni but is observed solely on supported materials. Only samples with the smallest particle sizes get fully reoxidized. The Ni-MgAl2O4 interface, exhibiting metal-support interactions, activates CO2 and channels oxygen into the reduced lattice. Oxygen diffuses inward, away from the interface, oxidizing Ni entirely or partially, depending on the particle size in the applied oxidation time frame. This work provides evidence for Ni oxidation by CO2 and explores the conditions of its occurrence and the importance of metal-support effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.