Abstract

To evaluate the contribution of the cleavage stage morphological parameters to the prediction of blastocyst transfer outcomes. A retrospective study was conducted on 8383 single-blastocyst transfer cycles including 2246 fresh and 6137 vitrified-warmed cycles. XGboost, LASSO, and GLM algorithms were employed to establish models for assessing the predictive value of the cleavage stage morphological parameters in transfer outcomes. Four models were developed using each algorithm: all-in model with or without day 3 morphology and embryo quality-only model with or without day 3 morphology. The live birth rate was 48.04% in the overall cohort. The AUCs of the models with the algorithm of XGboost were 0.83, 0.82, 0.63, and 0.60; with LASSO were 0.66, 0.66, 0.61, and 0.60; and with GLM were 0.66, 0.66, 0.61, and 0.60 respectively. In models 1 and 2, female age, basal FSH, peak E2, endometrial thickness, and female BMI were the top five critical features for predicting live birth; In models 3 and 4, the most crucial factor was blastocyst formation on D5 rather than D6. In model 3, incorporating cleavage stage morphology, including early cleavage, D3 cell number, and fragmentation, was significantly associated with successful live birth. Additionally, the live birth rates for blastocysts derived from on-time, slow, and fast D3 embryos were 49.7%, 39.5%, and 52%, respectively. The value of cleavage stage morphological parameters in predicting the live birth outcome of single blastocyst transfer is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.