Abstract

BackgroundAt 10 a.m. on January 23, 2020 Wuhan, China imposed a 76-day travel lockdown on its 11 million residents in order to stop the spread of COVID-19. This lockdown represented the largest quarantine in the history of public health and provides us with an opportunity to critically examine the relationship between a city lockdown on human mobility and controlling the spread of a viral epidemic, in this case COVID-19. This study aims to assess the causal impact of the Wuhan lockdown on population movement and the increase of newly confirmed COVID-19 cases.MethodsBased on the daily panel data from 279 Chinese cities, our research is the first to apply the synthetic control approach to empirically analyze the causal relationship between the Wuhan lockdown of its population mobility and the progression of newly confirmed COVID-19 cases. By using a weighted average of available control cities to reproduce the counterfactual outcome trajectory that the treated city would have experienced in the absence of the lockdown, the synthetic control approach overcomes the sample selection bias and policy endogeneity problems that can arise from previous empirical methods in selecting control units.ResultsIn our example, the lockdown of Wuhan reduced mobility inflow by approximately 60 % and outflow by about 50 %. A significant reduction of new cases was observed within four days of the lockdown. The increase in new cases declined by around 50% during this period. However, the suppression effect became less discernible after this initial period of time. A 2.25-fold surge was found for the increase in new cases on the fifth day following the lockdown, after which it died down rapidly.ConclusionsOur study provided urgently needed and reliable causal evidence that city lockdown can be an effective short-term tool in containing and delaying the spread of a viral epidemic. Further, the city lockdown strategy can buy time during which countries can mobilize an effective response in order to better prepare. Therefore, in spite of initial widespread skepticism, lockdowns are likely to be added to the response toolkit used for any future pandemic outbreak.

Highlights

  • At a.m. on January 23, 2020 Wuhan, China imposed a 76-day travel lockdown on its million residents in order to stop the spread of COVID-19

  • The city lockdown strategy can buy time during which countries can mobilize an effective response in order to better prepare

  • In spite of initial widespread skepticism, lockdowns are likely to be added to the response toolkit used for any future pandemic outbreak

Read more

Summary

Introduction

At a.m. on January 23, 2020 Wuhan, China imposed a 76-day travel lockdown on its million residents in order to stop the spread of COVID-19. This lockdown represented the largest quarantine in the history of public health and provides us with an opportunity to critically examine the relationship between a city lockdown on human mobility and controlling the spread of a viral epidemic, in this case COVID-19. Novel COVID-19 vaccines made by Pfizer and Moderna have provided promising efficacy, but it is still unclear how well they will contain the spread of coronavirus. Further complicating this problem is the fact that viruses constantly mutate [5]. The lag in vaccine development and the unclear effectiveness of existing vaccines against the new variants exacerbate the uncertainty of the containment and control in the coming months

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call