Abstract

Neurocognitive models of attentional bias for threat posit that attentional bias may result from a decreased activation of the left prefrontal cortex, and especially of its dorsolateral part (dlPFC), resulting in an impaired attention control. Consequently, a transient increase of neural activity within the left dlPFC via non-invasive brain stimulation reduces attentional bias among both anxious and nonanxious participants. Yet, it is still unclear whether the impact of dlPFC activation on attentional bias is mediated by improvement in attention control. In this experiment, we sought to test this hypothesis in an unselected sample (n = 20). Accordingly, we adopted a double-blind within-subject protocol in which we delivered a single-session of anodal versus sham transcranial Direct Current Stimulation (tDCS) over the left dlPFC during the completion of a task assessing attention control. We also assessed its subsequent impact on attentional bias. Neither attention control nor attentional bias did significantly improve following anodal tDCS. Although our results do not support our main hypothesis, we believe the present null results to be particularly useful for future meta-research in the field. We also formulated a series of methodological recommendations for future research aiming at testing the tDCS-induced modification of attentional bias.

Highlights

  • Coussement et al: Does Change in Attention Control Mediate the Impact of transcranial Direct Current Stimulation (tDCS) on Attentional Bias for Threat? Limited Evidence from a Double-blind

  • These findings dovetail with longstanding neurocognitive models of attentional bias (e.g., Bishop, 2008, 2009; Vuilleumier, 2005) suggesting that the deployment of attention vis-à-vis threatening material is regulated by two primary neural systems: (1) a bottom–up amygdala-based system that produces a signal reflecting the perceived salience of stimuli and directs attention toward salient stimuli (Adolphs, Tranel, Damasio, & Damasio, 1995; Davis & Whalen, 2001), and (2) a top–down system mainly relying on the prefrontal cortex (PFC) that produce a signal when conflicting demands are made on attention and downregulate amygdala activation in the presence of threat (Bishop, 2004)

  • A comparison between mean latencies when the probe appeared in the same location as the threatening stimuli and the mean latency when the probe and the threatening stimuli appeared at different locations indicated that there was no significant difference between latencies of the former relative to the latter ­following the sham condition, t(19) = 0.46, p = .88, d =

Read more

Summary

Introduction

Coussement et al: Does Change in Attention Control Mediate the Impact of tDCS on Attentional Bias for Threat? Limited Evidence from a Double-blind. Changes in attentional bias via ABM procedures depended on the initial level of attention control (Paulewicz, Blaut, & Kłosowska, 2012) These findings dovetail with longstanding neurocognitive models of attentional bias (e.g., Bishop, 2008, 2009; Vuilleumier, 2005) suggesting that the deployment of attention vis-à-vis threatening material is regulated by two primary neural systems: (1) a bottom–up amygdala-based system that produces a signal reflecting the perceived salience of stimuli and directs attention toward salient stimuli (Adolphs, Tranel, Damasio, & Damasio, 1995; Davis & Whalen, 2001), and (2) a top–down system mainly relying on the prefrontal cortex (PFC) that produce a signal when conflicting demands are made on attention and downregulate amygdala activation in the presence of threat (Bishop, 2004). ABM increased vlPFC (Taylor et al, 2014) and attenuated bilateral amygdala activations (Britton et al, 2013; Månsson et al, 2013; Taylor et al, 2014) in patients with anxiety disorders

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call