Abstract
Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: i) the great geographical differences in the degree of virus contagiousness and lethality that were found in the different phases of the epidemic progression, and, ii) the potential role of the infected people’s blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that, in the subject-to-subject transfer, SARS-CoV-2 conserves on its capsid the erythrocytes’ antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account, and we compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection.
Highlights
The new infectious coronavirus disease 2019, called COVID-19, began to spread from China in December 2019 [1]
To describe the dynamics of the COVID-19 epidemics, we developed a generalized SIR (Susceptible-Infected-Recovered) model where the transmission of the infection depends on the blood types of the individuals
We proposed a generalized SIR model with infection rules dictated by antigenicity between different blood types
Summary
The new infectious coronavirus disease 2019, called COVID-19, began to spread from China in December 2019 [1]. The most evident COVID-19 symptoms are pneumonia and respiratory failure, which reiterate the symptoms reported in the SARS (Severe Acute Respiratory Syndrome) epidemic of 2003 [2, 3]. The first cluster to clearly show these symptoms were patients from Wuhan, People’s Republic of China (WMHC) [2]. In early January 2020, scientists at the National Institute of Viral Disease Control and Prevention (IVDC) isolated the new virus for the first time from patients in Wuhan and found it to be a novel β-genus coronavirus, which has been named SARS-CoV-2 [4]. The outbreak has rapidly spread in many other countries. On 11 March 2020, the World Health Organization declared it a pandemic [5, 6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.