Abstract
Recent physiological studies have established that cortical cells that are tuned for the direction of motion may also exhibit tuning for binocular disparity. This tuning does not appear to provide any advantage in discriminating the direction of global motion in random-dot kinematograms. Here we investigated the possibility that this tuning may be important in the perception of transparent motion. Random-dot kinematograms were presented which contained coherent motion in a single direction or in two opposing directions. A greater proportion of signal dots was required for the detection of transparent motion than of motion in a single direction. This difference vanished when the two opposite directions of motion were presented with different disparities. These results suggest that the direction of global motion can be computed separately for surfaces which are clearly segregated in depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.