Abstract
In a human cadaveric model, the effects of plate supplementation on the mechanical behaviors of adjacent segments were investigated. The objective was to determine the effects of anterior cervical fusion and plating on the adjacent segments. Increases in intradiscal pressure and intervertebral motion at adjacent segments have been reported in the lumbar spine following an instrumented fusion. It is unclear if the same phenomenon presents in the cervical spine. Seven human cadaveric cervical spines (C2-T1) were used, and fusion of the C5-C6 segment was chosen for the purpose of this study. Two miniature pressure transducers were implanted within each adjacent disc. Flexion, extension, lateral bending, and torsion loads up to 2.5 Nm were applied to the intact spine, and following each of the two procedures, anterior discectomy and grafted fusion, and anterior plating of the C5-C6 motion segment. At the surgical level, a significant increase in segmental stiffness was observed after plating in all directions. Following the grafted fusion, there were no statistically significant changes at the superior adjacent segment, and there was a 13.7% increase in axial rotation in the inferior adjacent segment. Once anterior plating was applied, slight increase (<12%) over the intact spines was noted in lateral bending in both adjacent segments. However, there was no significant difference between the grafted fusion and anterior plated fusion at either adjacent segment. At both adjacent disc levels, the differences in intradiscal pressures between grafted fusion and plated fusion were less than 30% in all directions, and none of these differences was statistically significant. Intradiscal pressures and intervertebral motion at the adjacent levels are not significantly affected by the instrumented anterior fusion. The clinically observed degenerative change at adjacent segments in the cervical spine is more likely to be attributed to natural progression of the spondylotic process as opposed to biomechanical effect of the instrumentation or fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.