Abstract
Mastrus ridibundus is a specialist hymenopteran parasitoid that parasitizes last-instar larvae or prepupae of the codling moth, Cydia pomonella. Foraging females eavesdrop on an aggregation pheromone produced by cocooning larvae. We investigated whether larvae that cocoon in aggregation experience a greater rate of parasitism than larvae that cocoon in isolation. In wind tunnel experiments, 10 larvae in aggregations were more readily located by female M. ridibundus than 10 larvae well separated from each other. Similarly, aggregations of 30 larvae were more attractive to female M. ridibundus than those of 3 larvae. In cage experiments, larval cocooning in aggregation or isolation had no effect on the mean rate of parasitism and the mean number of eggs deposited per parasitized host. In Petri-dish experiments, the location of larvae within an aggregation significantly affected their rate of parasitism, with those in the center of an aggregation completely shielded from parasitism. Our data suggest that aggregation behavior by C. pomonella larvae does not appear to increase the rate of parasitism. The increased risk of aggregated larvae to be detected by M. ridibundus is likely offset by diluted parasitism risk and structural refugia effects that larvae in aggregation experience. As an egg-limited parasitoid, female M. ridibundus can parasitize on average only one larva in an aggregation, with the likelihood of parasitism for each larva being inversely proportional to the number of larvae in that aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.