Abstract
Aerobic and resistance exercise (acute and chronic) independently and collectively induce beneficial responses in the brain that may influence memory function, including an increase in cerebral blood flow, neurogenesis, neuroelectrical alterations, and protein production. However, whether aerobic and resistance exercise improve memory via similar or distinct mechanisms has yet to be fully explained. Here, we review the unique influence of aerobic and resistance exercise on neural modulation, proteins, receptors, and ultimately, episodic memory. Resistance training may optimize neural communication, information processing and memory encoding by affecting the allocation of attentional resources. Moreover, resistance exercise can reduce inflammatory markers associated with neural communication while increasing peripheral and central BDNF (brain-derived neurotrophic factor) production. Aerobic training increases hippocampal levels of BDNF and TrkB (Tropomyosin receptor kinase B), protein kinases and glutamatergic proteins. Likewise, both aerobic and anaerobic exercise can increase CREB (cAMP response element-binding protein) phosphorylation. Thus, we suggest that aerobic and resistance exercise may influence episodic memory via similar and, potentially, distinct mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.