Abstract

This study evaluated the surface morphology, chemical composition and adhesiveness of lithium disilicate glass ceramic after acid etching with hydrofluoric acid or phosphoric acid. Lithium disilicate glass ceramic specimens polished by 600-grit silicon carbide paper were subjected to one or a combination of these surface treatments: airborne particle abrasion with 50-μm alumina (AA), etching with 5% hydrofluoric acid (HF) or 36% phosphoric acid (Phos), and application of silane coupling agent (Si). Stainless steel rods of 3.6-mm diameter and 2.0-mm height were cemented onto treated ceramic surfaces with a self-adhesive resin cement (Clearfil SA Cement). Shear bond strengths between ceramic and cement were measured after 24-hour storage in 37°C distilled water. SEM images of AA revealed the formation of conventional microretentive grooves, but acid etching with HF or Phos produced a porous surface. Bond strengths of AA+HF+Si (28.1 ± 6.0 MPa), AA+Phos+Si (17.5 ± 4.1 MPa) and HF+Si (21.0 ± 3.0 MPa) were significantly greater than those of non-pretreated controls with Si (9.7 ± 3.7 MPa) and without Si (4.1 ± 2.4 MPa) (p<0.05). In addition, HF etching alone (26.2 ± 7.5 MPa) had significantly higher bond strength than AA alone (11.5 ± 4.0 MPa) (p<0.05). AA+HF, AA+Phos and HF showed cohesive failures. Etching with HF or Phos yielded higher bond strength between lithium disilicate glass ceramic and self-adhesive resin cement without microcrack formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.