Abstract
Abstract We examine if an efficient particle acceleration takes place by a magnetic-field-aligned electric field near the light cylinder in a rotating neutron star magnetosphere. Constructing the electric current density with the actual motion of collisionless plasmas, we express the rotationally induced Goldreich–Julian charge density as a function of position. It is demonstrated that the ‘light cylinder gap’, which emits very high energy photons via curvature process by virtue of a strong magnetic-field-aligned electric field very close to the light cylinder, will not arise in an actual pulsar magnetosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Monthly Notices of the Royal Astronomical Society: Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.