Abstract

BackgroundMost manufacturer manuals do not verify the use of dual energy X-ray absorptiometry for body composition analysis in subjects with a metal implant. This study aimed to quantify the effects of a spinal implant on body composition, and to determine whether unadjusted lean mass estimates are valid for patients with a spinal implant.MethodsA total of 30 healthy subjects were recruited. Three consecutive scans were performed for each participant, one with and two without extraneous spinal implant, without repositioning between scans. Lean, fat and bone estimates in the total body, trunk and limb were measured.ResultsPrecision errors for all total and regional body compositions were within the recommended ranges. Bone masses in the trunk and total body were significantly increased with spinal implant, and the increases exceeded the least significant change. For total and regional lean and fat estimates, the measurements between subjects with and without metal implants were in substantial to almost perfect agreement and the differences were not significant and did not exceed the least significant change.ConclusionsSpinal metal artifacts significantly increased the total body and trunk bone mass but the differences in lean- and fat-related estimates at total and regional body levels and all estimates in the extremity remained within the clinical acceptable range. Thus, a spinal implant may not compromise screening of patients for fat and lean masses using dual energy X-ray absorptiometry. Application of image reconstruction or a filtering algorithm may help reduce the effect of metallic artifacts and further study is needed.

Highlights

  • Dual energy X-ray absorptiometry (DXA), with its reasonable accuracy, accessibility and cost, has become a common tool for assessing body composition in both clinical and research settings

  • Precision errors for all total and regional body compositions were within the recommended ranges

  • The influence of metal artifacts on DXA bone densitometry has been extensively investigated, and the most common solution for high density artifacts is to exclude the affected regions from the analysis

Read more

Summary

Background

Most manufacturer manuals do not verify the use of dual energy X-ray absorptiometry for body composition analysis in subjects with a metal implant. This study aimed to quantify the effects of a spinal implant on body composition, and to determine whether unadjusted lean mass estimates are valid for patients with a spinal implant

Methods
Results
Conclusions
Introduction
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.