Abstract

The purpose of this study was to evaluate first-pass cardiac signal changes with a higher concentrated gadolinium-chelate (gadobutrol) and its influence on bolus geometry. Phantom studies and in vivo first-pass cardiac studies were performed in rabbits (n = 8 experiments) under general anesthesia at 1.0 T using an ultrafast T1-weighted Turbo-fast low-angle shot (FLASH) sequence (TR/TE 4.7/1. 6 msec, alpha = 90 degrees ) with a time resolution of 870 msec. Gadobutrol was injected as an intravenous bolus at two concentrations (0.5 and 1.0 mol Gd/L) and five doses (0.3, 0.15, 0.1, 0.055, and 0.03 mmol Gd/kg bw). The blood-pool gadolinium compound gadopentetate dimeglumine-polylysine (0.15, 0.075, 0.05, and 0.015 mmol Gd/kg bw, 0.5 mol Gd/L) and the standard extracellular gadopentetate dimeglumine (0.1 and 0.05 mmol Gd/kg bw, 0.5 mol Gd/L) served as reference agents. Cardiac signal changes were calculated from serial signal intensity measurements. Maximum signal intensity changes and best peak profiles during first pass of the right and left ventricle were observed with a dose of 0.03 mmol Gd/kg bw gadobutrol using T1-weighted Turbo-FLASH. At the low application volumes used, the higher concentration of 1.0 mol Gd/L gadobutrol did not increase the degree of signal intensity changes or sharpen the bolus profile. First-pass cardiac signal changes using T1-weighted Turbo-FLASH with the new extracellular contrast agent gadobutrol are best observed at a dose of 0.03 mmol Gd/kg bw. There is no advantage to the concentrated formulation (1 mol Gd/L gadobutrol) when using small injection volumes. J. Magn. Reson. Imaging 1999;10:806-812.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.