Abstract

BackgroundMesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19). Leng et al. recently reported that hUC-MSCs derived from one donor negatively expressed Angiotensin-Converting Enzyme 2 (ACE2), a key protein for viral infection along with Transmembrane Serine Protease 2 (TMPRSS2). The purpose of this study was to quantify the expression of ACE2 and TMPRSS2 in hUC-MSCs lots derived from multiple donors using molecular-based techniques in order to demonstrate their inability to be a host to SARS-CoV-2.MethodsExpression of ACE2 and TMPRSS2 was analyzed in 24 lots of hUC-MSCs derived from Wharton's jelly via quantitative polymerase chain reaction (qPCR), Western Blot, immunofluorescence and flow cytometry using 24 different donors.ResultshUC-MSCs had significantly lower ACE2 (p = 0.002) and TMPRSS2 (p = 0.008) expression compared with human lung tissue homogenates in Western blot analyses. Little to no expression of ACE2 was observed in hUC-MSC by qPCR, and they were not observable with immunofluorescence in hUC-MSCs cell membranes. A negative ACE2 and TMPRSS2 population percentage of 95.3% ± 15.55 was obtained for hUC-MSCs via flow cytometry, with only 4.6% ACE2 and 29.5% TMPRSS2 observable positive populations.ConclusionsWe have demonstrated negative expression of ACE2 and low expression of TMPRSS2 in 24 lots of hUC-MSCs. This has crucial implications for the design of future therapeutic options for COVID-19, since hUC-MSCs would have the ability to “dodge” viral infection to exert their immunomodulatory effects.

Highlights

  • Mesenchymal stem cells derived from human umbilical cord have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19)

  • We investigated the expression of Angiotensin-Converting Enzyme 2 (ACE2) and TMPRSS2 in hUC-Mesenchymal stem cells (MSCs) lines derived from different donors using quantitative polymerase chain reaction, Western Blot, immunofluorescence and flow cytometry

  • TMPRSS2 levels were variable between hUC-MSCs from different donors

Read more

Summary

Introduction

Mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19). Leng et al recently reported that hUC-MSCs derived from one donor negatively expressed Angiotensin-Converting Enzyme 2 (ACE2), a key protein for viral infection along with Transmembrane Serine Protease 2 (TMPRSS2). Mesenchymal stem cells (MSCs) [12, 13] exert antiinflammatory [14,15,16], anti-bacterial, anti-protozoan and anti-viral [17,18,19,20] effects making them a possible treatment for COVID-19-related complications [21,22,23,24]. In a study of 150 people with confirmed cases of COVID-19, levels of the inflammatory cytokine IL-6 were significantly higher in non-survivors than in survivors of the disease [29]. UC-MSCs have been used to modulate IL-6 in the body: for example, the levels of IL-6 decreased around 50% three months after treatment in a study of 172 patients with rheumatoid arthritis [31]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call