Abstract
The electrochemical fiber coating (EFC) technique was used for the preparation of dodecylsulfate-doped polypyrrole (PPy-DS), and applied as a new fiber for solid-phase microextraction (SPME) procedures. PPy-DS film was directly electrodeposited on the surface of a platinum wire from an aqueous solution containing pyrrole and sodium dodecylsulfate, using cyclic voltammetry (CV). The effect of polymerization conditions and type of dopants on the thermal stability, adhesion and extraction characteristics of the fiber were investigated. The electron microscopy imaging of PPy-DS film suggested that the surface fiber coating was well-distributed with a porous structure. The fiber coating can be prepared easily in a reproducible manner, and it is inexpensive and has a stable performance at high temperatures (up to the 300 degrees C). The extraction properties of the fiber to eight polycyclic aromatic hydrocarbons (PAHs) were examined, using a headspace-SPME (HS-SPME) device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The results revealed study shows that PPy-DS as a SPME fiber coating is suitable for the successful extraction of PAHs. The effects of the extraction parameters including exposure time, sampling temperature, salt concentration, and stirring rate on the extraction efficiency have been studied. A satisfactory reproducibility for extractions from spiked water samples at PPb-level with R.S.D. < 7.6% (n = 7) was obtained. The calibration graphs were linear in the range of 0.5-100ng ml(-1) and detection limits for the selected PAHs were between 0.05-0.16 ng ml(-1). Comparing the HS-SPME results for extraction and determination of PAHs using PPy-DS fiber with the corresponding literature data using PDMS fiber shows that the proposed fiber has a better detection limit for low molecular weight PAHs. The life span and stability of PPy-DS fiber is good and it can be used more than 50 times at 250 degrees C without any significant change in sorption properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.