Abstract
Concerning clinical trials, intracavitary hyperthermia has already shown antitumor activity and has a potential role in the treatment of prostate cancer. The aim of this study was to document a new intracavitary applicator operating at 433 MHz, designed for transrectal hyperthermia, as well as to assess the specific absorption rate (SAR) distributions in terms of temperature measurements in a soft-tissue phantom. The microwave applicator consists of a dipole-type λ/2, a reflector, and the cooling system. The applicator was placed into a soft-tissue gel-phantom box that was mimicking the dielectric properties of the normal tissue. A calibrated thermometer was implanted inside the phantom at specific locations, to calculate temperature distributions. The maximum value of the SAR was 108 W/kg on the surface's central area at the footprint of the antenna, while the penetration depth was at around 3 cm. Our experimental measurements confirmed the role of the reflector concerning the directivity in a certain area and non icotropic, by means of protecting normal tissues around the prostate. The SAR experimental measurements showed that our applicator might be used effectively as a treatment device for prostate cancer, demonstrating a clear advantage over other similar transrectal devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.