Abstract
Automatic text summarization focuses on distilling summary information from texts. This research field has been considerably explored over the past decades because of its significant role in many natural language processing tasks; however, two challenging issues block its further development: (1) how to yield a summarization model embedding topic inference rather than extending with a pre-trained one and (2) how to merge the latent topics into diverse granularity levels. In this study, we propose a variational hierarchical model to holistically address both issues, dubbed VHTM. Different from the previous work assisted by a pre-trained single-grained topic model, VHTM is the first attempt to jointly accomplish summarization with topic inference via variational encoder-decoder and merge topics into multi-grained levels through topic embedding and attention. Comprehensive experiments validate the superior performance of VHTM compared with the baselines, accompanying with semantically consistent topics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.