Abstract

This paper deals with automatic detection of seal (stamp) from documents with cluttered background. Seal detection involves a difficult challenge due to its multi-oriented nature, arbitrary shape, overlapping of its part with signature, noise, etc. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors computed from recognition result of individual connected components (characters). Scale and rotation invariant features are used in a Support Vector Machine (SVM) classifier to recognize multi-scale and multi-oriented text characters. The concept of generalized Hough transform (GHT) is used to detect the seal and a voting scheme is designed for finding possible location of the seal in a document based on the spatial feature descriptor of neighboring component pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal in a document. Experiment is performed in an archive of historical documents of handwritten/printed English text. Experimental results show that the method is robust in locating seal instances of arbitrary shape and orientation in documents, and also efficient in indexing a collection of documents for retrieval purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.