Abstract

Online medical consultation (OMC) allows doctors and patients to communicate with each other in an online synchronous or asynchronous setting. Unlike face-to-face consultations in which doctors are only passively chosen by patients with appointments, doctors engaging in voluntary online consultation have the option of choosing patients they hope to treat when faced with a large number of online questions from patients. It is necessary to characterize doctors’ preferences for patient selection in OMC, which can contribute to their more active participation in OMC services. We proposed to exploit a bipartite graph to describe the doctor–patient interaction and use an exponential random graph model (ERGM) to analyze the doctors’ preferences for patient selection. A total of 1404 doctor–patient consultation data retrieved from an online medical platform in China were used for empirical analysis. It was found that first, mildly ill patients will be prioritized by doctors, but the doctors with more professional experience may be more likely to prefer more severely ill patients. Second, doctors appear to be more willing to provide consultation services to patients from urban areas, but the doctors with more professional experience or from higher-quality hospitals give higher priority to patients from rural and medically underserved areas. Finally, doctors generally prefer asynchronous communication methods such as picture/text consultation, while the doctors with more professional experience may be more willing to communicate with patients via synchronous communication methods, such as voice consultation or video consultation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.