Abstract
Docosapentaenoic acid (22:5n-3, n-3 DPA) is a n-3 polyunsaturated fatty acid (PUFA) found in fish oil, and has been reported to have health benefits. This study investigated conversion of n-3 DPA, and examined the anti-inflammatory effects of n-3 DPA on activated macrophages. Murine macrophage-like RAW264.7 cells were incubated in culture media containing n-3 DPA for 72 h. The level of n-3 DPA in the fatty acid composition of the total lipid fraction increased in a dose-dependent manner. Furthermore, the levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were higher in treated cells than in control cells. In RAW264.7 cells stimulated by lipopolysaccharide (LPS), n-3 DPA significantly down-regulated mRNA expression of pro-inflammatory factors such as IL-6, IL-1β, iNOS and COX-2. Production of IL-6 was also reduced by n-3 DPA in a dose-dependent manner. We found that n-3 DPA treatment resulted in greater IL-6 mRNA down-regulation than that achieved with EPA treatment, and was similar to that of DHA treatment. Furthermore, expression levels of IL-6 and IL-1β mRNAs were measured in the presence of the delta-6 desaturase inhibitor SC26196 in the culture medium to inhibit the conversion of n-3 DPA to DHA. There was no significant difference in the down-regulation in the mRNA expression of pro-inflammatory cytokines in RAW264.7 cells by n-3 DPA with or without presence of SC26196. These results demonstrate that n-3 DPA exhibits anti-inflammatory effects in activated RAW264.7 cells, which are independent of DHA conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.