Abstract

Both Docosahexaenoic acid (DHA) and Phosphatidylcholine (PC) have been shown to halt the pathogenesis of Alzheimer disease (AD) and vascular dementia. This study aimed to investigate the role of DHA-containing PC (DHA-PC) in the improvement of Aβ25-35-induced cognitive deficits in rats. Aβ25-35-induced AD rats were treated for 30 days with DHA-PC, which was extracted from Sthenoteuthis oualaniensis spawns. Cognitive improvement of the AD rats was detected using the Morris water maze (MWM). The results demonstrated that DHA-PC could improve the learning and memory abilities of AD rats in a dose-dependent pattern. Further analyses showed that expression of phosphorylated tau decreased, and the neuronal morphology recovered in brains of DHA-PC-treated AD rats, as compared with mock-treated AD rats. In addition, DHAPC treatment increased the activity of GSH-Px and SOD in the cortex and hippocampus of AD rats. Taken together, these data suggest that DHA-PC is able to improve the cognitive deficits in AD rats, probably through decreasing the phosphorylation of tau in the cortex and hippocampus CA1 area, and increasing the GSH-Px and SOD activities in the brain of AD rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call