Abstract

Delta-6 desaturase-null mice ((-/-)) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6). The (-/-) males exhibit infertility and arrest of spermatogenesis at late spermiogenesis. To determine which HUFA is essential for spermiogenesis, a diet supplemented with either 0.2% (w/w) AA or DHA was fed to wild-type ((+/+)) and (-/-) males at weaning until 16 weeks of age (n = 3-5). A breeding success rate of DHA-supplemented (-/-) was comparable to (+/+). DHA-fed (-/-) showed normal sperm counts and spermiogenesis. Dietary AA was less effective in restoring fertility, sperm count, and spermiogenesis than DHA. Testis fatty acid analysis showed restored DHA in DHA-fed (-/-), but DPAn6 remained depleted. In AA-fed (-/-), AA was restored at the (+/+) level, and 22:4n6, an AA elongated product, accumulated in testis. Cholesta-3,5-diene was present in testis of (+/+) and DHA-fed (-/-), whereas it diminished in (-/-) and AA-fed (-/-), suggesting impaired sterol metabolism in these groups. Expression of spermiogenesis marker genes was largely normal in all groups. In conclusion, DHA was capable of restoring all observed impairment in male reproduction, whereas 22:4n6 formed from dietary AA may act as an inferior substitute for DHA.

Highlights

  • Delta-6 desaturase-null mice (؊/؊) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6)

  • Delta-6 desaturase (D6D) is the first and rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis that consists of a series of elongation and desaturation reactions [1]

  • We determined the effects of dietary AA and DHA on the fertility and spermatogenesis of the D6Dnull males

Read more

Summary

Introduction

Delta-6 desaturase-null mice (؊/؊) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6). DHA-fed ؊/؊ showed normal sperm counts and spermiogenesis. Dietary AA was less effective in restoring fertility, sperm count, and spermiogenesis than DHA. Testis fatty acid analysis showed restored DHA in DHA-fed ؊/؊, but DPAn6 remained depleted. Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice. The dietary essential fatty acids 18:2n-6 (linoleic acid) and 18:3n-3 (␣-linolenic acid) are substrates for D6D and precursors of physiologically important HUFAs, such as 20:4n-6 [arachidonic acid (AA)], 22:5n6 [docosapentaenoic acid (DPAn6)], and 22:6n3 [docosahexaenoic acid (DHA)]. D6D is required for the final desaturation step for the synthesis of DPAn6 and DHA

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.