Abstract

Docosahexaenoic acid (DHA) is an essential component for brain development during fetal and early postnatal life. Hyperbilirubinemia is characterized by abnormally high levels of bilirubin in the bloodstream, frequently leading to jaundice in newborns. In severe instances, this condition can progress to neurological damage or kernicterus, a form of brain damage. Initial cell-based experiments conducted by our research team revealed that DHA significantly enhances the survival rate of nerve cells treated with bilirubin and diminishes the oxidative stress indicated by reduced peroxide activity caused by unconjugated bilirubin (UCB). Further investigations through animal studies demonstrated that DHA effectively mitigates bilirubin-induced brain injury in neonatal rats. However, the potential of DHA to decrease the incidence of bilirubin-induced brain damage in clinical settings has not been previously explored or reported. Infants with neonatal hyperbilirubinemia (n = 30 per group) participated in a double-blind, randomized, placebo-controlled parallel study. They received either 100 mg/d DHA or placebo syrup immediately when they were diagnosed. The study found that the bilirubin level at 48 hours of treatment, serum neuron-specific enolase (NSE) levels, mean phototherapy duration, and abnormal rate of cranial magnetic resonance imaging (MRI) were lower in the DHA group than those in the control group (P < .05). These results suggested that DHA is effective as an adjuvant treatment for hyperbilirubinemia in children. It can reduce the incidence of neonatal hyperbilirubinemia brain injury and plays a certain protective role. Clinical study on protective effect of DHA on neonatal bilirubin injury is registered at Chinese Clinical Trial Registry as ChiCTR2300070250.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call